date_trunc in Python Pandas
Posted August 23, 2022 by Rohith ‐ 1 min read
date_trunc is the date function used to truncate a date or datetime value to the start of a given unit of duration. The function helps in truncating the date column to year, decade, century, quarter, month, week, day, hour, minute, second, or millisecond. In this article, we will truncate the date column using python pandas.
TL;DR
use dt.floor('<trunc-param>')
or dt.to_period(<trunc-param>)
date_trunc In Pandas
for applying dt
functions, we must make sure the column type is timestamp
.
Convert column to datetime
We can convert the pandas
column to datetime
using, pd.to_datetime()
function.
Example:
data['order_dt'] = pd.to_datetime(data['order_time'])
Apply Truncate Operation
Once we have pandas datetime column, we can apply truncate operation on datetime column using dt.floor('<trunc-param>')
or dt.to_period(<trunc-param>)
Example:
data['order_hour'] = data['order_dt'].floor('h')
Truncate By Hour
Use h
or H
as param.
Example:
data['order_hour'] = data['order_dt'].floor('H')
Truncate By Month
Use M
as param.
Example:
data['order_hour'] = data['order_dt'].floor('M')
Truncate By Minute
Use m
as param.
Example:
data['order_hour'] = data['order_dt'].floor('m')